发布日期:2023-06-24 21:45:36

乳酸堆积好处对糖酵解乳酸堆积优化糖酵解的关键好处

本文目录

  1. 糖酵解产生丙酮酸的方法?
  2. 糖酵解是什么意思?
  3. 糖酵解生成atp的步骤?
  4. 乳酸与三氯化铁反应?
  5. 同型乳酸发酵名词解释?

糖酵解产生丙酮酸的方法?

丙酮酸激酶催化下,磷酸烯醇式丙酮酸分子高能磷酸基团转移给ADP生成ATP,是糖酵解途径第二次底物水平磷酸化反应,需要Mg2+和K+参与,反应不可逆。

葡萄糖分解途径中,将葡萄糖转变到丙酮酸的阶段,为糖有氧氧化和糖酵解共有的过程。

氧供应不足时,糖酵解途径生成的丙酮酸在乳酸脱氢酶催化下,由NADH+H+提供氢,还原成乳酸。葡萄糖在无氧条件下转化成乳酸的这一过程称糖酵解。

糖酵解是什么意思?

糖酵解是葡萄糖或糖原在组织中进行类似发酵的降解反应过程。最终形成乳酸或丙酮酸,同时释出部分能量,形成ATP供组织利用。

糖酵解生成atp的步骤?

糖酵解途径(glycolytic pathway)是指细胞在胞浆中分糖酵解

解葡萄糖生成丙酮酸(pyruvate)的过程,此过程中伴有少量ATP的生成。在缺氧条件下丙酮酸被还原为乳酸(lactate)称为糖酵解。有氧条件下丙酮酸可进一步氧化分解生成乙酰CoA进入三羧酸循环,生成CO2和H2O.

葡萄糖不能直接扩散进入细胞内,其通过两种方式转运入细胞:一种是与Na+共转运方式,它是一个耗能逆浓度梯度转运,主要发生在小肠粘膜细胞、肾小管上皮细胞等部位;另一种方式是通过细胞膜上特定转运载体将葡萄糖转运入细胞内,它是一个不耗能顺浓度梯度的转运过程。已知转运载体有5种,其具有组织特异性如转运载体-1(GLUT-1)主要存在于红细胞,而转运载体-4(GLUT-4)主要存在于脂肪组织和肌肉组织。

糖酵解分为两个阶段共10个反应,每个分子葡萄糖经第一阶段共5个反应,消耗2个分子ATP为耗能过程,第二阶段5个反应生成4个分子ATP为释能过程。

第一阶段

(1)葡萄糖的磷酸化(phosphorylation of glucose)

进入细胞内的葡萄糖首先在第6位碳上被磷酸化生成6-磷酸葡萄糖(glucose 6 phophate,G-6-P),磷酸根由ATP供给,这一过程不仅活化了葡萄糖,有利于它进一步参与合成与分解代谢,同时还能使进入细胞的葡萄糖不再逸出细胞。催化此反应的酶是己糖激酶(hexokinase,HK)。己糖激酶催化的反应不可逆,反应需要消耗能量ATP,Mg2+是反应的激活剂,参与反应实际为Mg2+ATP2-复合物。它能催化葡萄糖、甘露糖、氨基葡萄糖、果糖进行不可逆的磷酸化反应,生成相应的6-磷酸酯,6-磷酸葡萄糖是HK的反馈抑制物,此酶是糖氧化反应过程的限速酶(rate limiting enzyme)或称关键酶(key enzyme)它有同工酶Ⅰ-Ⅳ型,Ⅰ、Ⅱ、Ⅲ型主要存在于肝外组织,其对葡萄糖Km值为10-5~10-6M

Ⅳ型主要存在于肝脏,特称葡萄糖激酶(glucokinase,GK),对葡萄糖的Km值1~10-2M,正常血糖浓度为5mmol/L,当血糖浓度升高时,GK活性增加,葡萄糖和胰岛素能诱导肝脏合成GK,GK能催化葡萄糖、甘露糖生成其6-磷酸酯,6-磷酸葡萄糖对此酶无抑制作用。

(2)6-磷酸葡萄糖的异构反应(isomerization of glucose-6-phosphate)

这是由磷酸己糖异构酶(phosphohexose isomerase)催化6-磷酸葡萄糖(醛糖aldose sugar)转变为6-磷酸果糖(fructose-6-phosphate,F-6-P)的过程,此反应是可逆的。

(3)6-磷酸果糖的磷酸化(phosphorylation of fructose-6-phosphate)

此反应是6磷酸果糖第一位上的C进一步磷酸化生成1,6-二磷酸果糖,磷酸根由ATP供给,催化此反应的酶是磷酸果糖激酶1(phosphofructokinase l,PFK1)。

PFK1催化的反应是不可逆反应,它是糖的有氧氧化过程中最重要的限速酶,它也是变构酶,柠檬酸、ATP等是变构抑制剂,ADP、AMP、Pi、1,6-二磷酸果糖等是变构激活剂,胰岛素可诱导它的生成。

(4)1.6 二磷酸果糖裂解反应(cleavage of fructose 1,6 di/bis phosphate)

醛缩酶(aldolase)催化1.6-二磷酸果糖生成磷酸二羟丙酮和3-磷酸甘油醛,此反应是可逆的。

(5)磷酸二羟丙酮的异构反应(isomerization of dihydroxyacetonephosphate)

磷酸丙糖异构酶(triose phosphate isomerase)催化磷酸二羟丙酮转变为3-磷酸甘油醛,此反应也是可逆的。

到此1分子葡萄糖生成2分子3-磷酸甘油醛,通过两次磷酸化作用消耗2分子ATP.

⒉第二阶段:

(6)3-磷酸甘油醛氧化反应(oxidation of glyceraldehyde-3-phosphate

此反应由3-磷酸甘油醛脱氢酶(glyceraldehyde 3-phosphatedehydrogenase)催化3-磷酸甘油醛氧化脱氢并磷酸化生成含有1个高能磷酸键的1,3-二磷酸甘油酸,本反应脱下的氢和电子转给脱氢酶的辅酶NAD+生成NADH+H+,磷酸根来自无机磷酸。

(7)1.3-二磷酸甘油酸的高能磷酸键转移反应

在磷酸甘油酸激酶(phosphaglycerate kinase,PGK)催化下,1.3-二磷酸甘油酸生成3-磷酸甘油酸,同时其C1上的高能磷酸根转移给ADP生成ATP,这种底物氧化过程中产生的能量直接将ADP磷酸化生成ATP的过程,称为底物水平磷酸化(substrate level phosphorylation)。此激酶催化的反应是可逆的。

(8)3-磷酸甘油酸的变位反应

在磷酸甘油酸变位酶(phosphoglycerate mutase)催化下3-磷酸甘油酸C3-位上的磷酸基转变到C2位上生成2-磷酸甘油酸。此反应是可逆的。

(9)2-磷酸甘油酸的脱水反应

由烯醇化酶(enolase)催化,2-磷酸甘油酸脱水的同时,能量重新分配,生成含高能磷酸键的磷酸烯醇式丙酮酸(phosphoenolpyruvate PEP)。本反应也是可逆的。

(10)磷酸烯醇式丙酮酸的磷酸转移

在丙酮酸激酶(pyruvate kinase,PK)催化下,磷酸烯醇式丙酮酸上的高能磷酸根转移至ADP生成ATP,这是又一次底物水平上的磷酸化过程。但此反应是不可逆的。

丙酮酸激酶是糖的有氧氧化过程中的限速酶,具有变构酶性质,ATP是变构抑制剂,ADP是变构激活剂,Mg2+或K+可激活丙酮酸激酶的活性,胰岛素可诱导PK的生成,烯醇式丙酮酸又可自动转变成丙酮酸。

乳酸与三氯化铁反应?

乳酸与三氯化铁可以认为不反应。因为乳酸不能取代盐酸根。

乳酸是一种羧酸,分子式是C3H6O3,含有羟基,属于α-羟酸(AHA)。在水溶液中,其羧基释放出一个质子而产生乳酸根离子CH3CH(OH)COO?。

在发酵过程中乳酸脱氢酶将丙酮酸转换为左旋乳酸。在一般的新陈代谢和运动中乳酸不断被产生,但是其浓度一般不会上升。只有在乳酸产生过程加快,乳酸无法被及时运走时其浓度才会提高。乳酸运输速度由一系列因素影响,其中包括单羧基转运体、乳酸脱氢酶的浓度和异构体形式、组织的氧化能力。一般来说血液中的乳酸浓度在不运动时为1-2mmol/L,在强烈运动时可以上升到20mmol/L。

一般来说当组织的能量无法通过有氧呼吸得以满足,组织无法获得足够的氧或者无法足够快地处理氧的情况下乳酸的浓度会上升。在这种情况下丙酮酸脱氢酶无法及时将丙酮酸转换为乙酰辅酶A,丙酮酸开始堆积。在这种情况下假如乳酸脱氢酶不将丙酮酸还原为乳酸的话糖酵解过程和三磷酸腺苷的合成会受到抑制。

同型乳酸发酵名词解释?

同型乳酸发酵指的是葡萄糖经过糖酵解途径(EMP)发酵,只生成乳酸这一种代谢产物,从能量守恒上来看就是1 mol葡萄糖可以在理论转化率(100%)下生成2 mol乳酸。

但是在微生物发酵过程中势必存在着其它生理活动,所以通常默认为乳酸的转化率达到80%以上即可以算作同型乳酸发酵。

  • 乳酸堆积好处对糖酵解乳酸堆积优化糖酵解的关键好处已关闭评论
  • A+
所属分类:会议纪实